The burden of disease associated with environmental exposures disproportionately impacts residents of low-and middle-income countries. Children living in rural regions of these countries may experience higher exposure to insecticides from indoor residual spraying used for malaria control and household air pollution. This study evaluated environmental exposures of children living in a rural region of South Africa. Quantifying exposure levels and identifying characteristics that are associated with exposure in this geographic region has been challenging due to limitations with available monitoring techniques. Wearable passive samplers have recently been shown to be a convenient and reliable tool for assessing personal exposures. In this study, a passive sampler wristband, known as Fresh Air wristband, was worn by 49 children (five-years of age) residing in the Limpopo province of South Africa. The study leveraged ongoing research within the Venda Health Examination of Mothers, Babies, and their Environment (VHEMBE) birth cohort. A wide range of chemicals (35 in total) were detected using the wristbands, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, phthalates, and organophosphate esters (OPEs) flame retardants. Higher concentrations of PAHs were observed among children from households that fell below the food poverty threshold, did not have access to electric cookstoves/burners, or reported longer times of cooking or burning materials during the sampling period. Concentrations of p, p′-DDD and p, p′-DDT were also found to be elevated for children from households falling below the food poverty threshold as well as for children whose households were sprayed for malaria control within the previous 1.5 years. This study demonstrates the feasibility of using passive sampler wristbands as a non-invasive method for personal exposure assessment of children in rural regions of South Africa to complex mixtures environmental contaminants derived from a combination of sources. Future studies are needed to further identify and understand the effects of airborne environmental contaminants on childhood development and strategies to mitigate exposures. All rights reserved, Elsevier.