Despite their predominance worldwide, few studies have been conducted to look at the impact of sheep production systems relying on transhumance practices in arid and continental conditions, on farm-level greenhouse gas (GHG) emissions. Using Turkey as an example, this paper examines on farm-level GHG emissions calculated for two contrasting sheep production systems under arid and continental climate conditions. Production and management data were obtained through face-to-face interviews carried out on 10 transhumance and 15 semi-intensive meat sheep farms in Turkey. A total of seven GHG emission estimates were then calculated for each farm with the Agricultural Resource Efficiency Calculator (AgRECalc©) tool; i) total Carbon Dioxide (CO2) from energy use (kg CO2e), ii) total Carbon Dioxide equivalent (CO2e) from methane (kg CO2e), iii) total CO2e from nitrous oxide (kg CO2e), iv) whole farm and enterprise CO2e emissions (kg CO2e), v) net emission from land use (kg CO2e), vi) whole farm CO2e emissions per kg of farm output (kg CO2e/kg output), vii) product CO2e emissions (meat): kg CO2e / kg live weight, and viii) farm output (kg of sheep). Multivariate analyses (using R software) were carried out to compare both farm types and their respective carbon emissions. The total farm output per ewe was lower in the transhumance farms (7.4kg/ewe) than in the semi-intensive farms (7.7kg/ewe). The kg CO2e per kg of output was also lower for the transhumance farms (46.2kg CO2e) than for the semi-intensive ones (56.5kg CO2e). This trend was similar for the amount of CO2e per kg of live weight produced (20.8kg and 25.4kg for the transhumance and the semi-intensive farms, respectively). Despite overall net emissions from land use being greater on average for the transhumance farms, once measured per hectare, they were found to be lower than those for the semi-intensive farms. This study provides a reference point for different sheep production systems' GHG emission impact in continental rangelands in Turkey. All rights reserved, Elsevier.