Heat stability (HS) is substantial technology property of raw milk. Analysis of sources of HS variation and its regular monitoring can contribute to creating higher added value in the dairy industry. The goal of this analysis was to assess the practice sources of raw cow milk HS variability on the results of an extensive data set of bulk tank milk samples. There was implemented neither a compositional technology modification nor acidity adjustment of milk, just original raw milk was used for the analysis. A total 2634 HS analyses were performed, including other milk indicators, during three years of an experimental period. The log HS mean and standard deviation were 1.273654±0.144189, equal to the HS geometric mean of 18.8 min. Explanation of the HS variability through the linear model used was 41.1% (p < 0.0001). According to the results of the variance analysis, the milk HS was influenced (p=0.0033 and mostly <0.0001) by all the farm factors such as year; season; calendar month; altitude; total annual rainfall; herd size by the number of cows; milk yield; cow breed; type of milking; litter type in the stable; summer grazing application; farm effect. During the calendar months (p < 0.0001), milk HS values suggest similar seasonal dynamics with the somatic cell count, total count of mesophilic microorganisms, coli bacteria count and urea and lactose concentration and opposite configuration pattern to fat, crude protein, solids-not-fat and total solids content and milk freezing point depression. Here performed quantification of these effects by analyzing the variance may allow efficient raw milk selection to be processed into specific dairy products. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.