Phosphatidylcholine (PC) oxidation leads to the fusion of nanoliposomes and leakage of containment compounds during the storage period. This study aims to improve the oxidation resistance by partially substituting PC in the osteogenic peptides (OPs) loaded nanoliposomes with hydrogenated phosphatidylcholine (HPC). The investigation assessed the characteristics, stability, and bioaccessibility of these novel nanoliposomes. By altering the PC/HPC mass ratio from 1:0 to 0:1, an increase in the encapsulation efficiency (EE), loading capacity (LC), polydispersity index (PDI), and bioaccessibility of OPs-loaded nanoliposomes was observed. Additionally, there was a decrease in thiobarbituric acid reactive substances (TBARS), peroxide value (POV), non-volatile aldehyde, and ketone. The stability of salt decreased when using HPC alone (0:1). The performance of OPs-loaded nanoliposomes with a PC/HPC mass ratio of 1:3 was found to be satisfactory in terms of storage and pH stability. Fluorescence spectroscopy, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR) revealed a tighter...

You do not currently have access to this content.