The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and...

You do not currently have access to this content.