Soybean breeders must develop early-maturing, standard, and late-maturing varieties for planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore, timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management and yield measurement. Currently, the widely used deep learning models focus more on extracting deep image features, whereas shallow image feature information is ignored. In this study, we designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring. DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine learning methods (support vector...

You do not currently have access to this content.