River water is an important source of Dutch drinking water. For this reason, continuous monitoring of river water quality is needed. However, comprehensive chemical analyses with high-resolution gas chromatography [GC]-mass spectrometry [MS] /liquid chromatography [LC]-MS are quite tedious and time consuming; this makes them poorly fit for routine water quality monitoring and, therefore, many pollution events are missed. Phytoplankton are highly sensitive and responsive to toxicity, which makes them highly usable for effect-based water quality monitoring. Flow cytometry can measure the optical properties of phytoplankton every hour, generating a large amount of information-rich data in one year. However, this requires chemometrics, as the resulting fingerprints need to be processed into information about abnormal phytoplankton behaviour. We developed Discriminant Analysis of Multi-Aspect CYtometry (DAMACY) to model the "normal condition" of the phytoplankton community imposed by diurnal, meteorological, and other exogenous influences. DAMACY first describes the cellular variability and distribution of phytoplankton...

You do not currently have access to this content.