Shigella sonnei remains the second most common cause of shigellosis in young children and is now increasingly dominant across developing countries. The global emergence of drug resistance has become a main burden in the treatment of S. sonnei infections and β-lactam antibiotics, such as pivmecillinam and ceftriaxone, are recommended to be used as second-line treatment. They work by inhibiting the biosynthesis of the peptidoglycan layer of bacterial cell walls, in which the final transpeptidation step is facilitated by penicillin-binding proteins (PBPs). In this study, using protein homology modelling, we modelled the structure of PBP6 from S. sonnei and comprehensively examined the molecular interactions between PBP6 and its pentapeptide substrate and two antibiotic inhibitors. The docked complex of S. sonnei PBP6 with pentapeptides showed that the substrate bound to the active site groove of the DD-carboxypeptidase domain, via hydrogen bonding interactions with the residues S79, V80, Q101, G144, D146 and R240,...

You do not currently have access to this content.