The transmission of antimicrobial resistance (AMR) between animals, their environment, food and humans is a complex issue. Previous pharmacokinetic-pharmacodynamic (PKPD) models indicate that extended-spectrum β-lactamase (ESBL) resistant bacterial populations may be self-sustaining through horizontal and vertical gene transfer, even in the absence of antimicrobial pressure. However, models focusing purely on the biochemical aspects fail to incorporate the complicated host population dynamics which occur within a farm environment. Models of disease transmission within commercial farm environments can provide further insight to the on-farm transmission dynamics of AMR between animals and their environment, as well as predict the effect of various on-farm interventions. Here, we present a risk assessment which predicts the likelihood that slaughter-aged pigs would carry resistant bacteria after a single introduction of ESBL E. coli on commercial pig farms. We incorporate outputs from a PKPD model which explores the complex host/gastrointestinal bacteria interplay after antimicrobial treatment; with an on-farm...

You do not currently have access to this content.