Overuse of polymer materials has caused increasing direct human exposure to bisphenol AP (BPAP). Through the contaminated environment and food chains, the adverse effects of BPAP on humans and plants induce growing concerns. In this study, the effects of BPAP on pepsin structure changes were exhaustively investigated by multi-spectral methods. Under mimic physiological conditions, BPAP caused a gradient intrinsic fluorescence quenching by inducing microenvironmental changes surrounding residues with the endogenous fluorescence in pepsin. During the ground-state complex formation, the senior structures of pepsin were altered by BPAP addition. Fourier transform infrared spectroscopy and circular dichroism spectroscopy showed that the secondary and tertiary structures of pepsin were changed after the addition of BPAP. Thermodynamic parameter analysis demonstrated that the pepsin and BPAP binding was a spontaneous process that was mainly driven by hydrophobic interaction and van der Waals force. With BPAP as the subject of density functional theory experiments, the energies...

You do not currently have access to this content.