Mimicking the textural properties of beef remains challenging for 3D-printable meat analogs, owing to the limited extrusive force of 3D printers. We aimed to develop 3D-printable meat analogs that imitate the physicochemical properties of beef using transglutaminase (TG, 0-8 U/g protein) and cooking (steaming, microwaving, baking, or frying). Increased TG incorporation enhanced the rheological properties of the raw meat analogs. When TG was added at 4 U/g protein, the printed meat analogs had smooth surfaces after being incubated at 25°C for 30min and relatively high hardnesses after 2 h of incubation. Moreover, meat analogs baked at 170°C for 25min had a similar hardness and springiness as beef (P > 0.05). The hardnesses of cooked beef and meat analogs were related to microstructural compactness, cooking loss, and transverse shrinkage. This study provides a method for modifying the texture of meat analogs using enzyme catalysis and cooking. Industrial relevance Currently, the...

You do not currently have access to this content.