The maternal n-3 polyunsaturated fatty acid (PUFA) deficiency on decidual vascular structure and angiogenesis in mice placenta was investigated. Namely, we studied uterine artery remodeling, fatty acid metabolism, and placental epigenetic methylation in this animal model. Weanling female Swiss albino mice were fed either alpha-linolenic acid (18:3 n-3, ALA) deficient diets (0.13% energy from ALA) or a sufficient diet (2.26% energy from ALA) throughout the study. The dietary n-3 PUFA deficiency altered uteroplacental morphology and vasculature by reversing luminal to vessel area and increased luminal wall thickness at 8.5-12.5gD. Further, placentas (F0 and F1) showed a significant decrease in the expression of VCAM1, HLAG proteins and an increase in MMP9, KDR expression. The conversion of ALA to long-chain (LC) n-3 PUFAs was significantly decreased in plasma and placenta during the n-3 deficiency state. Reduced n-3 LCPUFAs increased the placental expression of intracellular proteins FABP3, FABP4, and ADRP to compensate decreased...

You do not currently have access to this content.