Near infrared (950-1654 nm) hyperspectral imaging (NIR-HSI) was applied for the first time for the prediction of proximate composition (proteins, carbohydrates, lipids, ashes) and alpha-galactosides (verbascose, stachyose, raffinose) content of texturized vegetable proteins (TVP) obtained from different raw materials (four formulations) intended for plant-based meat analogues (PBMA) production. After exploration by Principal Component Analysis, the dataset was split into calibration and test sets and analyzed by Partial Least Squares Regression. In calibration and cross-validation, the R2 was between 0.92 and 0.98, with low error values. The figures of merit of the prediction confirm those results and the good performance of the models. Pixel-by-pixel prediction allowed the tracking of the non-uniform distribution of chemical components. Overall, NIR-HSI showed potentiality to be applied as a tool for rapid, accurate, and non-destructive quality control of TVP, which is fundamental as they strongly affect the nutritional and textural properties of PBMA. All rights...
Skip Nav Destination
Journal Article|
March 10 2022
Assessment of macronutrients and alpha-galactosides of texturized vegetable proteins by near infrared hyperspectral imaging.
J. M. Amigo, IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain. E-mail josemanuel.amigo@ehu.eus
Journal: Journal of Food Composition and Analysis
Citation: Journal of Food Composition and Analysis (2022) 108
DOI: 10.1016/j.jfca.2022.104459
Published: 2022
Citation
Squeo, G., Angelis, D. de, Summo, C., Pasqualone, A., Caponio, F., Amigo, J. M.; Assessment of macronutrients and alpha-galactosides of texturized vegetable proteins by near infrared hyperspectral imaging.. IFIS Food and Health Sciences Database 2022; doi:
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your Institution
Analyse Trends
Explore publication trends in the sciences of food and health.
Discover and compare the use of keywords over time.
Find global trends in research through publication categories.